{ "id": "2304.08238", "version": "v1", "published": "2023-04-17T12:59:31.000Z", "updated": "2023-04-17T12:59:31.000Z", "title": "Gradient estimate for solutions of the equation $Δ_pu +av^{q}=0$ on a complete Riemannian manifold", "authors": [ "Jie He", "Youde Wang", "Guodong Wei" ], "categories": [ "math.DG" ], "abstract": "In this paper, we use Nash-Moser iteration method to study the local and global behaviours of positive solutions to the nonlinear elliptic equation $\\Delta_pv +av^{q}=0$ defined on a complete Riemannian manifolds $(M,g)$ where $p>1$, $a$ and $q$ are constants. Under some assumptions on $a$, $p$ and $q$, we derive gradient estimates and Liouville type theorems for such positive solutions.", "revisions": [ { "version": "v1", "updated": "2023-04-17T12:59:31.000Z" } ], "analyses": { "keywords": [ "complete riemannian manifold", "nash-moser iteration method", "nonlinear elliptic equation", "liouville type theorems", "positive solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }