{ "id": "2304.08043", "version": "v1", "published": "2023-04-17T07:57:24.000Z", "updated": "2023-04-17T07:57:24.000Z", "title": "Van Kampen-Flores theorem and Stiefel-Whitney classes", "authors": [ "Daisuke Kishimoto", "Takahiro Matsushita" ], "comment": "8 pages", "categories": [ "math.AT", "math.CO", "math.GT" ], "abstract": "The van Kampen-Flores theorem states that the $d$-skeleton of a $(2d+2)$-simplex does not embed into $\\mathbb{R}^{2d}$. We prove the van Kampen-Flores theorem for triangulations of manifolds satisfying a certain condition on their Stiefel-Whitney classes. In particular, we show that the $d$-skeleton of a triangulation of a $(2d+1)$-manifold with non-trivial total Stiefel-Whitney class does not embed into $\\mathbb{R}^{2d}$.", "revisions": [ { "version": "v1", "updated": "2023-04-17T07:57:24.000Z" } ], "analyses": { "keywords": [ "van kampen-flores theorem states", "non-trivial total stiefel-whitney class", "triangulation" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }