{ "id": "2304.07796", "version": "v1", "published": "2023-04-16T14:26:44.000Z", "updated": "2023-04-16T14:26:44.000Z", "title": "Linkage and translation for tensor products of representations of simple algebraic groups and quantum groups", "authors": [ "Jonathan Gruber" ], "comment": "22 pages", "categories": [ "math.RT" ], "abstract": "Let $\\mathbf{G}$ be either a simple linear algebraic group over an algebraically closed field of characteristic $\\ell>0$ or a quantum group at an $\\ell$-th root of unity. We define a tensor ideal of singular $\\mathbf{G}$-modules in the category $\\mathrm{Rep}(\\mathbf{G})$ of finite-dimensional $\\mathbf{G}$-modules and study the associated quotient category $\\mathrm{\\underline{Re}p}(\\mathbf{G})$, called the regular quotient. Our main results are a 'linkage principle' and a 'translation principle' for tensor products: Let $\\mathrm{\\underline{Re}p}_0(\\mathbf{G})$ be the essential image in $\\mathrm{\\underline{Re}p}(\\mathbf{G})$ of the principal block of $\\mathrm{Rep}(\\mathbf{G})$. We first show that $\\mathrm{\\underline{Re}p}_0(\\mathbf{G})$ is closed under tensor products in $\\mathrm{\\underline{Re}p}(\\mathbf{G})$. Then we prove that the monoidal structure of $\\mathrm{\\underline{Re}p}(\\mathbf{G})$ is governed to a large extent by the monoidal structure of $\\mathrm{\\underline{Re}p}_0(\\mathbf{G})$. These results can be combined to give an external tensor product decomposition $\\mathrm{\\underline{Re}p}(\\mathbf{G}) \\cong \\mathrm{Ver}(\\mathbf{G}) \\boxtimes \\mathrm{\\underline{Re}p}_0(\\mathbf{G})$, where $\\mathrm{Ver}(\\mathbf{G})$ denotes the Verlinde category of $\\mathbf{G}$.", "revisions": [ { "version": "v1", "updated": "2023-04-16T14:26:44.000Z" } ], "analyses": { "subjects": [ "20G05", "20G42", "17B10", "17B55" ], "keywords": [ "simple algebraic groups", "quantum group", "translation", "simple linear algebraic group", "external tensor product decomposition" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }