{ "id": "2304.07581", "version": "v1", "published": "2023-04-15T15:31:37.000Z", "updated": "2023-04-15T15:31:37.000Z", "title": "Sharp upper bound for the sixth moment of the Riemann zeta function on the critical line", "authors": [ "Thi Altenschmidt" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "The main task of this work is to give an improvement for the upper bounds of the Laplace transform $$\\int_0^{+\\infty}\\Bigl|\\zeta\\left(\\frac{1}{2}+it\\right)\\Bigr|^{2\\beta}e^{-\\delta t}dt \\ll_{\\beta,\\varepsilon} \\frac{1}{\\delta^{\\frac{\\beta-1}{2}+\\varepsilon}}, \\quad 0 < \\delta < \\frac{\\pi}{2}, \\delta \\to 0^+, \\forall \\varepsilon > 0, \\forall \\beta \\geqslant 3.$$ In particular, this implies the desired estimation for the upper bound of the sixth moment of the Riemann zeta function on the critical line $$\\int_0^T \\Bigl|\\zeta\\left(\\frac{1}{2}+it\\right)\\Bigr|^6dt \\ll_{\\varepsilon} T^{1+\\varepsilon}, \\quad T \\to +\\infty, \\forall \\varepsilon > 0.$$", "revisions": [ { "version": "v1", "updated": "2023-04-15T15:31:37.000Z" } ], "analyses": { "keywords": [ "riemann zeta function", "sharp upper bound", "sixth moment", "critical line", "main task" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }