{ "id": "2304.06622", "version": "v1", "published": "2023-04-13T15:45:37.000Z", "updated": "2023-04-13T15:45:37.000Z", "title": "Character sheaves on tori over local fields", "authors": [ "Tanmay Deshpande", "Saniya Wagh" ], "comment": "32 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "Let $\\breve{K}$ be a complete discrete valuation field with an algebraically closed residue field ${k}$ and ring of integers $\\breve{{O}}$. Let $T$ be a torus defined over $\\breve{K}$. Let $L^+T$ denote the connected commutative pro-algebraic group over ${k}$ obtained by applying the Greenberg functor to the connected N\\'eron model of $T$ over $\\breve{{O}}$. Following the work of Serre for the multiplicative group, we first compute the fundamental group $\\pi_1(L^+T)$. We then study multiplicative local systems (or character sheaves) on $L^+T$ and establish a local Langlands correspondence for them. Namely, we construct a canonical isomorphism of abelian groups between the group of multiplicative local systems on $L^+T$ and inertial local Langlands parameters for $T$. Finally, we relate our results to the classical local Langlands correspondence for tori over local fields due to Langlands, via the sheaf-function correspondence.", "revisions": [ { "version": "v1", "updated": "2023-04-13T15:45:37.000Z" } ], "analyses": { "keywords": [ "local fields", "character sheaves", "inertial local langlands parameters", "complete discrete valuation field", "classical local langlands correspondence" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable" } } }