{ "id": "2304.04663", "version": "v1", "published": "2023-04-10T15:40:01.000Z", "updated": "2023-04-10T15:40:01.000Z", "title": "Kazdan-Warner Problem on Compact Riemann Surfaces with Smooth Boundary", "authors": [ "Jie Xu" ], "comment": "15 Pages, all comments are welcome", "categories": [ "math.AP", "math.DG" ], "abstract": "In this article, we show that (i) any smooth function on compact Riemann surface with non-empty smooth boundary $ (M, \\partial M, g) $ can be realized as a Gaussian curvature function; (ii) any smooth function on $ \\partial M $ can be realized as a geodesic curvature function for some metric $ \\tilde{g} \\in [g] $. The essential steps are the existence results of Brezis-Merle type equations $ -\\Delta_{g} u + Au = K e^{2u} \\; {\\rm in} \\; M $ and $ \\frac{\\partial u}{\\partial \\nu} + \\kappa u = \\sigma e^{u} \\; {\\rm on} \\; \\partial M $ with given functions $ K, \\sigma $ and some constants $ A, \\kappa $. In addition, we rely on the extension of the uniformization theorem given by Osgood, Phillips and Sarnak.", "revisions": [ { "version": "v1", "updated": "2023-04-10T15:40:01.000Z" } ], "analyses": { "subjects": [ "58J05", "35J60", "53C18" ], "keywords": [ "compact riemann surface", "kazdan-warner problem", "smooth function", "gaussian curvature function", "brezis-merle type equations" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }