{ "id": "2304.03878", "version": "v1", "published": "2023-04-08T00:29:33.000Z", "updated": "2023-04-08T00:29:33.000Z", "title": "Discrete logarithmic Sobolev inequalities in Banach spaces", "authors": [ "Dario Cordero-Erausquin", "Alexandros Eskenazis" ], "categories": [ "math.FA", "math.MG" ], "abstract": "Let $\\mathscr{C}_n=\\{-1,1\\}^n$ be the discrete hypercube equipped with the uniform probability measure $\\sigma_n$. We prove that if $(E,\\|\\cdot\\|_E)$ is a Banach space of finite cotype and $p\\in[1,\\infty)$, then every function $f:\\mathscr{C}_n\\to E$ satisfies the dimension-free vector-valued $L_p$ logarithmic Sobolev inequality $$\\|f-\\mathbb{E} f\\|_{L_p(\\log L)^{p/2}(E)} \\leq \\mathsf{K}_p(E) \\left( \\int_{\\mathscr{C}_n} \\Big\\| \\sum_{i=1}^n \\delta_i \\partial_i f\\Big\\|_{L_p(E)}^p \\, d\\sigma_n(\\delta)\\right)^{1/p}.$$ The finite cotype assumption is necessary for the conclusion to hold. This estimate is the hypercube counterpart of a result of Ledoux (1988) in Gauss space and the optimal vector-valued version of a deep inequality of Talagrand (1994). As an application, we use such vector-valued $L_p$ logarithmic Sobolev inequalities to derive new lower bounds for the bi-Lipschitz distortion of nonlinear quotients of the Hamming cube into Banach spaces with prescribed Rademacher type.", "revisions": [ { "version": "v1", "updated": "2023-04-08T00:29:33.000Z" } ], "analyses": { "keywords": [ "logarithmic sobolev inequality", "discrete logarithmic sobolev inequalities", "banach space", "uniform probability measure", "finite cotype assumption" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }