{ "id": "2304.03097", "version": "v1", "published": "2023-04-06T14:24:56.000Z", "updated": "2023-04-06T14:24:56.000Z", "title": "Some dynamical properties related to polynomials", "authors": [ "Qinqi Wu" ], "comment": "14 pages", "categories": [ "math.DS" ], "abstract": "Let $d\\in\\mathbb{Z}$ and $p_i$ be an integral polynomial with $p_i(0)=0,1\\leq i\\leq d$. It is shown that if $S$ is thickly syndetic in $\\mathbb{Z}$, then $\\{(m,n)\\in\\mathbb{Z}^2:m+p_i(n),m+p_2(n),\\ldots,m+p_d(n)\\in S\\}$ is thickly syndetic in $\\mathbb{Z}^2$. Meanwhile, we construct a transitive, strong mixing and non-minimal topological dynamical system $(X,T)$, such that the set $\\{x\\in X:\\forall\\ \\text{open}\\ U\\ni x,\\exists\\ n\\in\\mathbb{Z} \\ \\text{s.t.}\\ T^{n}x\\in U,T^{2n}x\\in U\\}$ is not dense in $X$.", "revisions": [ { "version": "v1", "updated": "2023-04-06T14:24:56.000Z" } ], "analyses": { "subjects": [ "37B05", "37B20" ], "keywords": [ "dynamical properties", "thickly syndetic", "integral polynomial", "non-minimal topological dynamical system" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }