{ "id": "2304.02778", "version": "v1", "published": "2023-04-05T22:50:45.000Z", "updated": "2023-04-05T22:50:45.000Z", "title": "Automorphism groups of curves over arbitrary fields", "authors": [ "Daniel Bragg" ], "comment": "19 pages. comments welcome", "categories": [ "math.AG" ], "abstract": "We show that if $K$ is an arbitrary field and $G$ is a finite group then there exists a curve over $K$ with automorphism group $G$. We also reduce the inverse Galois problem for function fields over an arbitrary field $K$ to the case of $K(T)$.", "revisions": [ { "version": "v1", "updated": "2023-04-05T22:50:45.000Z" } ], "analyses": { "subjects": [ "14H37", "12F12", "12F10" ], "keywords": [ "arbitrary field", "automorphism group", "inverse galois problem", "finite group" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }