{ "id": "2304.01493", "version": "v1", "published": "2023-04-04T03:13:16.000Z", "updated": "2023-04-04T03:13:16.000Z", "title": "Bounds on the number of scattering poles of half-Laplacian in odd dimensions, $d\\geq 3$", "authors": [ "Ebru Toprak" ], "categories": [ "math.AP" ], "abstract": "We study the scattering poles of $\\sqrt{-\\Delta} + V$, where $V$ is a compactly supported, bounded and complex valued potential. We show that the resolvent operator $ \\chi R_V \\chi$ has a meromorphic continuation to the whole Riemannian surface of $\\Lambda$ of $ \\log z $ as an operator $L^2 \\to L^2 $. We then obtain the upper bound on the counting function $N(r,a)= \\# \\{ z_j \\in \\Lambda: 0 \\leq |z_j| \\leq r, |\\arg z_j| \\leq a \\}$, $r >1$, $ |a| >1$ as $C \\langle a \\rangle ( \\langle r \\rangle^{d} + (\\log \\langle a \\rangle)^d) $, where $z_j$ are the poles of $ \\chi R_V \\chi$.", "revisions": [ { "version": "v1", "updated": "2023-04-04T03:13:16.000Z" } ], "analyses": { "subjects": [ "47A10", "35P25" ], "keywords": [ "scattering poles", "odd dimensions", "half-laplacian", "resolvent operator", "meromorphic continuation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }