{ "id": "2303.17827", "version": "v1", "published": "2023-03-31T06:49:15.000Z", "updated": "2023-03-31T06:49:15.000Z", "title": "A quantitative central limit theorem for Poisson horospheres in high dimensions", "authors": [ "Zakhar Kabluchko", "Daniel Rosen", "Christoph Thäle" ], "comment": "10 pages, 1 figure", "categories": [ "math.PR", "math.MG" ], "abstract": "Consider a stationary Poisson process of horospheres in a $d$-dimensional hyperbolic space. In the focus of this note is the total surface area these random horospheres induce in a sequence of balls of growing radius $R$. The main result is a quantitative, non-standard central limit theorem for these random variables as the radius $R$ of the balls and the space dimension $d$ tend to infinity simultaneously.", "revisions": [ { "version": "v1", "updated": "2023-03-31T06:49:15.000Z" } ], "analyses": { "subjects": [ "52A55", "60D05", "60F05", "60G55" ], "keywords": [ "quantitative central limit theorem", "high dimensions", "poisson horospheres", "non-standard central limit theorem", "random horospheres induce" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable" } } }