{ "id": "2303.17487", "version": "v1", "published": "2023-03-30T15:57:10.000Z", "updated": "2023-03-30T15:57:10.000Z", "title": "The extreme values of two probability functions for the Gamma distribution", "authors": [ "Ping Sun", "Ze-Chun Hu", "Wei Sun" ], "categories": [ "math.PR" ], "abstract": "Motivated by Chv\\'{a}tal's conjecture and Tomaszewaki's conjecture, we investigate the extreme value problem of two probability functions for the Gamma distribution. Let $\\alpha,\\beta$ be arbitrary positive real numbers and $X_{\\alpha,\\beta}$ be a Gamma random variable with shape parameter $\\alpha$ and scale parameter $\\beta$. We study the extreme values of functions $P\\{X_{\\alpha,\\beta}\\le E[X_{\\alpha,\\beta}]\\}$ and $P\\{|X_{\\alpha,\\beta}-E[X_{\\alpha,\\beta}]|\\le \\sqrt{{\\rm Var}(X_{\\alpha,\\beta})}\\}$. Among other things, we show that $ \\inf_{\\alpha,\\beta}P\\{X_{\\alpha,\\beta}\\le E[X_{\\alpha,\\beta}]\\}=\\frac{1}{2}$ and $\\inf_{\\alpha,\\beta}P\\{|X_{\\alpha,\\beta}-E[X_{\\alpha,\\beta}]|\\le \\sqrt{{\\rm Var}(X_{\\alpha,\\beta})}\\}=P\\{|Z|\\le 1\\}\\approx 0.6826$, where $Z$ is a standard normal random variable.", "revisions": [ { "version": "v1", "updated": "2023-03-30T15:57:10.000Z" } ], "analyses": { "subjects": [ "60E15", "62G32", "90C15" ], "keywords": [ "gamma distribution", "probability functions", "extreme value problem", "arbitrary positive real numbers", "standard normal random" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }