{ "id": "2303.17113", "version": "v1", "published": "2023-03-30T02:57:06.000Z", "updated": "2023-03-30T02:57:06.000Z", "title": "On optimal rate of convergence in periodic homogenization of forced mean curvature flow of graphs in the laminar setting", "authors": [ "Jiwoong Jang" ], "comment": "16 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we obtain the optimal rate of convergence in periodic homogenization of forced graphical mean curvature flows in the laminated setting. We prove that that a rate of convergence is $O(\\varepsilon^{1/2})$ as $\\varepsilon\\to0$, and we show by examples that this rate of convergence $O(\\varepsilon^{1/2})$ as $\\varepsilon\\to0$ is optimal.", "revisions": [ { "version": "v1", "updated": "2023-03-30T02:57:06.000Z" } ], "analyses": { "subjects": [ "35B10", "35B27", "35B40", "35B45", "35D40", "35K93", "53E10" ], "keywords": [ "forced mean curvature flow", "optimal rate", "periodic homogenization", "convergence", "laminar setting" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }