{ "id": "2303.15897", "version": "v1", "published": "2023-03-28T11:22:41.000Z", "updated": "2023-03-28T11:22:41.000Z", "title": "${\\rm Spin}(7)$ is unacceptable", "authors": [ "Gaƫtan Chenevier", "Wee Teck Gan" ], "comment": "42 pages", "categories": [ "math.NT", "math.GR", "math.RT" ], "abstract": "We classify the pairs of group morphisms $\\Gamma \\rightarrow {\\rm Spin}(7)$ which are element conjugate but not globally conjugate. As an application, we study the case where $\\Gamma$ is the Weil group of a $p$-adic local field, which is relevant to the recent approach to the local Langlands correspondence for ${\\rm G}_2$ and ${\\rm PGSp}_6$ by Gan and Savin. As a second application, we improve some result of Kret and Shin about ${\\rm GSpin}_7$-valued Galois representations.", "revisions": [ { "version": "v1", "updated": "2023-03-28T11:22:41.000Z" } ], "analyses": { "subjects": [ "22C05", "20G15", "20G41", "11F80", "11R39" ], "keywords": [ "adic local field", "local langlands correspondence", "group morphisms", "element conjugate", "weil group" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }