{ "id": "2303.15596", "version": "v1", "published": "2023-03-27T20:59:52.000Z", "updated": "2023-03-27T20:59:52.000Z", "title": "Symmetric Powers", "authors": [ "János Kollár", "Pham Huu Tiep" ], "categories": [ "math.RT", "math.GR" ], "abstract": "Given a faithful finite-dimensional representation $V$ of a finite group $G$ over any field $\\mathbb{F}$, we show that any irreducible ${\\mathbb{F}}G$-module $W$ appears, as a submodule or a quotient, in $\\mathrm{Sym}^m(V)$ for some integer $1 \\leq m \\leq |G|$ (that may depend on $W$).", "revisions": [ { "version": "v1", "updated": "2023-03-27T20:59:52.000Z" } ], "analyses": { "subjects": [ "20C20" ], "keywords": [ "symmetric powers", "faithful finite-dimensional representation", "finite group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }