{ "id": "2303.15004", "version": "v1", "published": "2023-03-27T08:46:12.000Z", "updated": "2023-03-27T08:46:12.000Z", "title": "Hankel operators on vector-valued Bergman spaces with exponential weights", "authors": [ "Jian-xiang Dong", "Yu-feng Lu" ], "comment": "16 pages", "categories": [ "math.FA" ], "abstract": "Let $\\mathcal{H}$ be a separable Hilbert space and let $A^{2}_{\\varphi}(\\mathcal{H})$ be the $\\mathcal{H}$-valued Bergman spaces with exponential weights. In the present paper, we give the complete characterizations for the boundedness and compactness of Hankel operators on $A^{2}_{\\varphi}(\\mathcal{H})$. For $p\\geq2$, the Schatten $p$-classes of the Hankel operator with conjugate analytic symbols are studied.", "revisions": [ { "version": "v1", "updated": "2023-03-27T08:46:12.000Z" } ], "analyses": { "subjects": [ "47B35", "32A36" ], "keywords": [ "hankel operator", "vector-valued bergman spaces", "exponential weights", "conjugate analytic symbols", "separable hilbert space" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }