{ "id": "2303.14610", "version": "v1", "published": "2023-03-26T03:08:59.000Z", "updated": "2023-03-26T03:08:59.000Z", "title": "Uniqueness and nondegeneracy of ground states for $(-Δ)^su+u=2(I_2\\star u^2)u$ in $\\mathbb{R}^N$ when $s$ is close to 1", "authors": [ "Huxiao Luo" ], "comment": "arXiv admin note: text overlap with arXiv:1301.4868 by other authors", "categories": [ "math.AP" ], "abstract": "In this article, we study the uniqueness and nondegeneracy of ground states to a fractional Choquard equation of the form: $(-\\Delta)^su+u=2(I_2\\star u^2)u$ where $s\\in(0,1)$ is sufficiently close to $1$. Our method is to make a continuation argument with respect to the power $s\\in(0,1)$ appearing in $(-\\Delta)^s$. This approach is based on [M. M. Fall and E. Valdinoci, Comm. Math. Phys., 329 (2014) 383-404].", "revisions": [ { "version": "v1", "updated": "2023-03-26T03:08:59.000Z" } ], "analyses": { "subjects": [ "35A02", "35B20", "35J61" ], "keywords": [ "ground states", "uniqueness", "nondegeneracy", "fractional choquard equation", "continuation argument" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }