{ "id": "2303.14252", "version": "v1", "published": "2023-03-24T19:35:17.000Z", "updated": "2023-03-24T19:35:17.000Z", "title": "Long chains in the Rudin-Frolík order for uncountable cardinals", "authors": [ "Klaas Pieter Hart" ], "categories": [ "math.LO", "math.GN" ], "abstract": "We point out that a construction by Butkovi\\v{c}ov\\'a of a chain of length $\\mathfrak{c}^+$ in the Rudin-Frol\\'ik order on $\\beta\\omega$ can easily be adapted to produce, given an uncountable cardinal $\\kappa$, a chain of length $(2^\\kappa)^+$ in the Rudin-Frol\\'ik order on $\\beta\\kappa$.", "revisions": [ { "version": "v1", "updated": "2023-03-24T19:35:17.000Z" } ], "analyses": { "subjects": [ "03E05", "54D80" ], "keywords": [ "uncountable cardinal", "rudin-frolík order", "long chains" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }