{ "id": "2303.13985", "version": "v1", "published": "2023-03-24T13:13:20.000Z", "updated": "2023-03-24T13:13:20.000Z", "title": "$L^p$-boundedness of wave operators for $Δ^2 + V$ on ${\\mathbb R}^4$", "authors": [ "Artbazar Galtbayar", "Kenji Yajima" ], "comment": "77 pages", "categories": [ "math-ph", "math.MP" ], "abstract": "We prove that the wave operators of scattering theory for the fourth order Schr\\\"odinger operators $\\Delta^2 + V(x)$ in ${\\mathbb R}^4$ are bounded in $L^p({\\mathbb R}^4)$ for the set of $p$'s of $(1,\\infty)$ depending on the kind of spectral singularities of $H$ at zero which can be described by the space of bounded solutions of $(\\Delta^2 + V(x))u(x)=0$.", "revisions": [ { "version": "v1", "updated": "2023-03-24T13:13:20.000Z" } ], "analyses": { "keywords": [ "wave operators", "boundedness", "fourth order", "spectral singularities" ], "note": { "typesetting": "TeX", "pages": 77, "language": "en", "license": "arXiv", "status": "editable" } } }