{ "id": "2303.11974", "version": "v1", "published": "2023-03-21T16:07:38.000Z", "updated": "2023-03-21T16:07:38.000Z", "title": "On inequalities involving counts of the prime factors of an odd perfect number", "authors": [ "Graeme Clayton", "Cody S. Hansen" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "Let $N$ be an odd perfect number. Let $\\omega(N)$ be the number of distinct prime factors of $N$ and let $\\Omega(N)$ be the total number (counting multiplicity) of prime factors of $N$. We prove that $\\frac{99}{37}\\omega(N) - \\frac{187}{37} \\leq \\Omega(N)$ and that if $3\\nmid N$, then $\\frac{51}{19}\\omega(N)-\\frac{46}{19} \\leq \\Omega(N)$.", "revisions": [ { "version": "v1", "updated": "2023-03-21T16:07:38.000Z" } ], "analyses": { "subjects": [ "11A25", "11A51", "11N32" ], "keywords": [ "odd perfect number", "inequalities", "distinct prime factors", "total number" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }