{ "id": "2303.11142", "version": "v1", "published": "2023-03-20T14:21:24.000Z", "updated": "2023-03-20T14:21:24.000Z", "title": "Fluctuations in Quantum Unique Ergodicity at the Spectral Edge", "authors": [ "Lucas Benigni", "Nixia Chen", "Patrick Lopatto", "Xiaoyu Xie" ], "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We study the eigenvector mass distribution of an $N\\times N$ Wigner matrix on a set of coordinates $I$ satisfying $| I | \\ge c N$ for some constant $c >0$. For eigenvectors corresponding to eigenvalues at the spectral edge, we show that the sum of the mass on these coordinates converges to a Gaussian in the $N \\rightarrow \\infty$ limit, after a suitable rescaling and centering. The proof proceeds by a two moment matching argument. We directly compare edge eigenvector observables of an arbitrary Wigner matrix to those of a Gaussian matrix, which may be computed explicitly.", "revisions": [ { "version": "v1", "updated": "2023-03-20T14:21:24.000Z" } ], "analyses": { "keywords": [ "quantum unique ergodicity", "spectral edge", "fluctuations", "eigenvector mass distribution", "arbitrary wigner matrix" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }