{ "id": "2303.09940", "version": "v1", "published": "2023-03-17T12:54:31.000Z", "updated": "2023-03-17T12:54:31.000Z", "title": "The socle of the group algebra of a finite $p$-group", "authors": [ "David J. Benson" ], "comment": "3 pages", "categories": [ "math.RT", "math.GR", "math.RA" ], "abstract": "Let $G$ be a finite $p$-group, and $\\alpha$ an automorphism of the group algebra ${\\mathbb F}_pG$. Then $\\alpha$ fixes the socle of ${\\mathbb F}_pG$ pointwise. More generally, if $k$ is a field of characteristic $p$, and $\\alpha$ is a $k$-algebra automorphism of $kG$, then $\\alpha$ induces a linear action on the dimension subquotients of the group, and the action on the socle is scalar multiplication by the $(p-1)$st power of the product of the determinants of this action. The scalar is thus an element of $(k^\\times)^{p-1}$.", "revisions": [ { "version": "v1", "updated": "2023-03-17T12:54:31.000Z" } ], "analyses": { "subjects": [ "20C20" ], "keywords": [ "group algebra", "algebra automorphism", "linear action", "dimension subquotients", "scalar multiplication" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable" } } }