{ "id": "2303.09878", "version": "v1", "published": "2023-03-17T10:53:03.000Z", "updated": "2023-03-17T10:53:03.000Z", "title": "Unique representations of integers by linear forms", "authors": [ "Sándor Z. Kiss", "Csaba Sándor" ], "categories": [ "math.NT" ], "abstract": "Let $k\\ge 2$ be an integer and let $A$ be a set of nonnegative integers. For a $k$-tuple of positive integers $\\underline{\\lambda} = (\\lambda_{1}, \\dots{} ,\\lambda_{k})$ with $1 \\le \\lambda_{1} < \\lambda_{2} < \\dots{} < \\lambda_{k}$, we define the additive representation function $R_{A,\\underline{\\lambda}}(n) = |\\{(a_{1}, \\dots{} ,a_{k})\\in A^{k}: \\lambda_{1}a_{1} + \\dots{} + \\lambda_{k}a_{k} = n\\}|$. For $k = 2$, Moser constructed a set $A$ of nonnegative integers such that $R_{A,\\underline{\\lambda}}(n) = 1$ holds for every nonnegative integer $n$. In this paper we characterize all the $k$-tuples $\\underline{\\lambda}$ and the sets $A$ of nonnegative integers with $R_{A,\\underline{\\lambda}}(n) = 1$ for every integer $n\\ge 0$.", "revisions": [ { "version": "v1", "updated": "2023-03-17T10:53:03.000Z" } ], "analyses": { "keywords": [ "linear forms", "unique representations", "nonnegative integer", "additive representation function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }