{ "id": "2303.08656", "version": "v1", "published": "2023-03-15T14:38:48.000Z", "updated": "2023-03-15T14:38:48.000Z", "title": "On the sharpness of the bound for the local converse theorem of p-adic GL_N, general N", "authors": [ "Moshe Adrian" ], "categories": [ "math.RT", "math.NT" ], "abstract": "Let F be a non-archimedean local field of characteristic zero. In this paper we construct examples of supercuspidal representations showing that the bound $[N/2]$ for the local converse theorem of $GL_N(F)$ is sharp, N general, when the residual characteristic of $F$ is bigger than $N$.", "revisions": [ { "version": "v1", "updated": "2023-03-15T14:38:48.000Z" } ], "analyses": { "subjects": [ "11S70", "22E50" ], "keywords": [ "local converse theorem", "non-archimedean local field", "residual characteristic", "characteristic zero", "construct examples" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }