{ "id": "2303.06534", "version": "v1", "published": "2023-03-12T01:30:53.000Z", "updated": "2023-03-12T01:30:53.000Z", "title": "Every arithmetic progression contains infinitely many $b$-Niven numbers", "authors": [ "Joshua Harrington", "Matthew Litman", "Tony W. H. Wong" ], "journal": "Bull. Aust. Math. Soc. 109 (2024) 409-413", "doi": "10.1017/S0004972723000758", "categories": [ "math.NT" ], "abstract": "For an integer $b\\geq 2$, a positive integer is called a $b$-Niven number if it is a multiple of the sum of the digits in its base-$b$ representation. In this article, we show that every arithmetic progression contains infinitely many $b$-Niven numbers.", "revisions": [ { "version": "v1", "updated": "2023-03-12T01:30:53.000Z" } ], "analyses": { "subjects": [ "11A63", "11B25" ], "keywords": [ "arithmetic progression contains", "niven number", "representation", "positive integer" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }