{ "id": "2303.06383", "version": "v2", "published": "2023-03-11T11:26:25.000Z", "updated": "2023-04-11T12:36:16.000Z", "title": "Baxter operators in Ruijsenaars hyperbolic system I. Commutativity of Q-operators", "authors": [ "N. Belousov", "S. Derkachov", "S. Kharchev", "S. Khoroshkin" ], "categories": [ "math-ph", "hep-th", "math.MP", "math.QA", "math.RT" ], "abstract": "We introduce Baxter Q-operators for the quantum Ruijsenaars hyperbolic system. We prove that they represent a commuting family of integral operators and also commute with Macdonald difference operators, which are gauge equivalent to the Ruijsenaars Hamiltonians of the quantum system. The proof of commutativity of the Baxter operators uses a hypergeometric identity on rational functions that generalize Ruijsenaars kernel identities.", "revisions": [ { "version": "v2", "updated": "2023-04-11T12:36:16.000Z" } ], "analyses": { "keywords": [ "baxter operators", "commutativity", "quantum ruijsenaars hyperbolic system", "generalize ruijsenaars kernel identities", "macdonald difference operators" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }