{ "id": "2303.06291", "version": "v2", "published": "2023-03-11T03:03:42.000Z", "updated": "2024-07-16T02:47:43.000Z", "title": "Well-posedness and scattering for wave equations on hyperbolic spaces with singular data", "authors": [ "Lucas C. F. Ferreira", "Pham Truong Xuan" ], "comment": "17 pages", "categories": [ "math.AP", "math-ph", "math.DG", "math.FA", "math.MP" ], "abstract": "We consider the wave and Klein-Gordon equations on the real hyperbolic space $\\mathbb{H}^{n}$ ($n \\geq2$) in a framework based on weak-$L^{p}$ spaces. First, we establish dispersive estimates on Lorentz spaces in the context of $\\mathbb{H}^{n}$. Then, employing those estimates, we prove global well-posedness of solutions and an exponential asymptotic stability property. Moreover, we develop a scattering theory and construct wave operators in such singular framework.", "revisions": [ { "version": "v2", "updated": "2024-07-16T02:47:43.000Z" } ], "analyses": { "keywords": [ "singular data", "wave equations", "well-posedness", "exponential asymptotic stability property", "real hyperbolic space" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }