{ "id": "2303.04120", "version": "v3", "published": "2023-03-07T18:30:59.000Z", "updated": "2023-06-12T10:26:52.000Z", "title": "Galois cohomology of reductive groups over global fields", "authors": [ "Mikhail Borovoi", "Tasho Kaletha" ], "comment": "V1,2: 43 pages. V3: 58 pages, a new section added", "categories": [ "math.NT", "math.AG", "math.GR", "math.RT" ], "abstract": "Generalizing Tate's results for tori, we give closed formulas for the abelian Galois cohomology groups H^1_{ab}(F,G) and H^2_{ab}(F,G) of a connected reductive group G over a global field F, and obtain formulas, suitable for computer calculatios, for the first nonabelian Galois cohomology set H^1(F,G) of G and for the second Galois cohomology group H^2(F,T) of an F-torus T.", "revisions": [ { "version": "v3", "updated": "2023-06-12T10:26:52.000Z" } ], "analyses": { "subjects": [ "11E72", "20G10", "20G25", "20G30" ], "keywords": [ "global field", "reductive group", "first nonabelian galois cohomology set", "abelian galois cohomology groups", "second galois cohomology group" ], "note": { "typesetting": "TeX", "pages": 43, "language": "en", "license": "arXiv", "status": "editable" } } }