{ "id": "2303.02544", "version": "v2", "published": "2023-03-05T01:30:57.000Z", "updated": "2024-11-11T22:41:22.000Z", "title": "$L$-functions for $\\mathrm{Sp}(2n)\\times\\mathrm{GL}(k)$ via non-unique models", "authors": [ "Yubo Jin", "Pan Yan" ], "comment": "37 pages. The main result on integral representation is strengthened to Sp(2n)xGL(k) for all positive integers n and k such that n is even", "categories": [ "math.NT", "math.RT" ], "abstract": "Let $n$ and $k$ be positive integers such that $n$ is even. We derive new global integrals for $\\mathrm{Sp}_{2n}\\times\\mathrm{GL}_k$ from the generalized doubling method of Cai, Friedberg, Ginzburg and Kaplan, following a strategy and extending a previous result of Ginzburg and Soudry on the case $n=k=2$. We show that these new integrals unfold to non-unique models on $\\mathrm{Sp}_{2n}$. Using the New Way method of Piatetski-Shapiro and Rallis, we show that these new global integrals represent the $L$-functions for $\\mathrm{Sp}_{2n}\\times\\mathrm{GL}_k$, generalizing a previous result of the second-named author on $\\mathrm{Sp}_{4}\\times\\mathrm{GL}_2$ and a previous work of Piatetski-Shapiro and Rallis on $\\mathrm{Sp}_{2n}\\times\\mathrm{GL}_1$.", "revisions": [ { "version": "v2", "updated": "2024-11-11T22:41:22.000Z" } ], "analyses": { "subjects": [ "11F70", "11F55", "22E50", "22E55" ], "keywords": [ "non-unique models", "global integrals represent", "way method", "piatetski-shapiro", "integrals unfold" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }