{ "id": "2303.02521", "version": "v2", "published": "2023-03-04T22:53:37.000Z", "updated": "2023-05-07T21:11:52.000Z", "title": "Defining $\\mathbb Z$ using unit groups", "authors": [ "Barry Mazur", "Karl Rubin", "Alexandra Shlapentokh" ], "comment": "Minor changes and corrections", "categories": [ "math.NT", "math.LO" ], "abstract": "We consider first-order definability and decidability questions over rings of integers of algebraic extensions of $\\mathbb Q$, paying attention to the uniformity of definitions. The uniformity follows from the simplicity of our first-order definition of $\\mathbb Z$. Namely, we prove that for a large collection of algebraic extensions $K/\\mathbb Q$, $$ \\{x \\in {\\mathcal O}_K : \\text{$\\forall \\varepsilon \\in {\\mathcal O}_K^\\times \\;\\exists \\delta \\in {\\mathcal O}_K^\\times$ such that $\\delta-1 \\equiv (\\varepsilon-1)x \\pmod{(\\varepsilon-1)^2}$}\\} = \\mathbb Z $$ where ${\\mathcal O}_K$ denotes the ring of integers of $K$.", "revisions": [ { "version": "v2", "updated": "2023-05-07T21:11:52.000Z" } ], "analyses": { "subjects": [ "11U05" ], "keywords": [ "unit groups", "algebraic extensions", "first-order definability", "large collection", "decidability questions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }