{ "id": "2302.11470", "version": "v1", "published": "2023-02-22T16:16:33.000Z", "updated": "2023-02-22T16:16:33.000Z", "title": "Surjective morphisms from affine space to its Zariski open subsets", "authors": [ "Viktor Balch Barth" ], "comment": "7 pages. Comments welcome!", "categories": [ "math.AG" ], "abstract": "We prove constructively the existence of surjective morphisms from affine space onto certain open subvarieties of affine space of the same dimension. For any algebraic set $Z\\subset \\mathbb{A}^{n-2}\\subset \\mathbb{A}^{n}$, we construct an endomorphism of $\\mathbb{A}^{n}$ with $\\mathbb{A}^{n} \\setminus Z$ as its image. By Noether's normalization lemma, these results extend to give surjective maps from any $n$-dimensional affine variety $X$ to $\\mathbb{A}^{n} \\setminus Z$.", "revisions": [ { "version": "v1", "updated": "2023-02-22T16:16:33.000Z" } ], "analyses": { "subjects": [ "14R10", "14A10" ], "keywords": [ "affine space", "zariski open subsets", "surjective morphisms", "noethers normalization lemma", "dimensional affine variety" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }