{ "id": "2302.06974", "version": "v1", "published": "2023-02-14T11:07:39.000Z", "updated": "2023-02-14T11:07:39.000Z", "title": "Quadratic equations in metabelian Baumslag-Solitar groups", "authors": [ "Richard Mandel", "Alexander Ushakov" ], "comment": "17 pages", "categories": [ "math.GR" ], "abstract": "For a finitely generated group $G$, the Diophantine problem over $G$ is the algorithmic problem of deciding whether a given equation $W(z_1,z_2,\\ldots,z_k) = 1$ (perhaps restricted to a fixed subclass of equations) has a solution in $G$. We investigate the algorithmic complexity of the Diophantine problem for the class $\\mathcal{C}$ of quadratic equations over the metabelian Baumslag-Solitar groups $BS(1,n)$. In particular, we prove that this problem is NP-complete whenever $n\\neq 1$, and determine the algorithmic complexity for various subclasses (orientable, nonorientable etc.) of $\\mathcal{C}$.", "revisions": [ { "version": "v1", "updated": "2023-02-14T11:07:39.000Z" } ], "analyses": { "subjects": [ "20F10", "20F16", "68W30" ], "keywords": [ "metabelian baumslag-solitar groups", "quadratic equations", "algorithmic complexity", "diophantine problem", "algorithmic problem" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }