{ "id": "2302.04049", "version": "v1", "published": "2023-02-08T13:40:24.000Z", "updated": "2023-02-08T13:40:24.000Z", "title": "On a Gross conjecture over imaginary quadratic fields", "authors": [ "Saad El Boukhari" ], "comment": "17 pages", "categories": [ "math.NT" ], "abstract": "Let $k$ be an imaginary quadratic number field, and $F/k$ a finite abelian extension of Galois group $G$. We show that a Gross conjecture concerning the leading terms of Artin $L$-series holds for $F/k$ and all rational primes which are split in $k$ and which do not divide $6$.", "revisions": [ { "version": "v1", "updated": "2023-02-08T13:40:24.000Z" } ], "analyses": { "keywords": [ "imaginary quadratic fields", "imaginary quadratic number field", "finite abelian extension", "galois group", "series holds" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }