{ "id": "2302.03532", "version": "v1", "published": "2023-02-07T15:25:16.000Z", "updated": "2023-02-07T15:25:16.000Z", "title": "The asymptotic $p$-Poisson equation as $p \\to \\infty$ in Carnot-Carathéodory spaces", "authors": [ "Luca Capogna", "Gianmarco Giovannardi", "Andrea Pinamonti", "Simone Verzellesi" ], "categories": [ "math.AP" ], "abstract": "In this paper we study the asymptotic behavior of solutions to the subelliptic $p$-Poisson equation as $p\\to +\\infty$ in Carnot Carath\\'eodory spaces. In particular, introducing a suitable notion of differentiability, we extend the celebrated result of Bhattacharya, DiBenedetto and Manfredi [Rend. Sem. Mat. Univ. Politec. Torino, 1989, Special Issue, 15-68] and we prove that limits of such solutions solve in the sense of viscosity a hybrid first and second order PDE involving the $\\infty-$Laplacian and the Eikonal equation.", "revisions": [ { "version": "v1", "updated": "2023-02-07T15:25:16.000Z" } ], "analyses": { "subjects": [ "35H20", "35D40", "35J92", "35J94" ], "keywords": [ "poisson equation", "carnot-carathéodory spaces", "second order pde", "carnot caratheodory spaces", "asymptotic behavior" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }