{ "id": "2302.02492", "version": "v1", "published": "2023-02-05T21:51:54.000Z", "updated": "2023-02-05T21:51:54.000Z", "title": "A family of Spin(8) dual pairs: the case of real groups", "authors": [ "Wee Teck Gan", "Hung Yean Loke", "Annegret Paul", "Gordan Savin" ], "categories": [ "math.RT" ], "abstract": "Exceptional groups of type $E_6$ contain dual pairs where one member is $\\mathrm{Spin}(8)$, and the other is $T\\rtimes \\mathbb Z/2\\mathbb Z$, where $T$ is a two-dimensional torus and the non-trivial element in $\\mathbb Z/2\\mathbb Z$ acts on $T$ by the inverse involution. We describe the correspondence of representations arising by restricting the minimal representation.", "revisions": [ { "version": "v1", "updated": "2023-02-05T21:51:54.000Z" } ], "analyses": { "subjects": [ "22E46" ], "keywords": [ "real groups", "contain dual pairs", "exceptional groups", "inverse involution", "non-trivial element" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }