{ "id": "2302.02085", "version": "v1", "published": "2023-02-04T04:07:06.000Z", "updated": "2023-02-04T04:07:06.000Z", "title": "Semicontinuous maps on module varieties", "authors": [ "Christof Geiß", "Daniel Labardini-Fragoso", "Jan Schröer" ], "comment": "17 pages", "categories": [ "math.RT" ], "abstract": "We study semicontinuous maps on varieties of modules over finite-dimensional algebras. We prove that truncated Euler maps are upper or lower semicontinuous. This implies that $g$-vectors and $E$-invariants of modules are upper semicontinuous. We also discuss inequalities of generic values of some upper semicontinuous maps.", "revisions": [ { "version": "v1", "updated": "2023-02-04T04:07:06.000Z" } ], "analyses": { "keywords": [ "module varieties", "study semicontinuous maps", "finite-dimensional algebras", "upper semicontinuous maps", "truncated euler maps" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable" } } }