{ "id": "2302.01865", "version": "v1", "published": "2023-02-03T17:09:09.000Z", "updated": "2023-02-03T17:09:09.000Z", "title": "On a Weighted Series of the Hurwitz Zeta Function", "authors": [ "Matthew Fox", "Chaitanya Karamchedu" ], "comment": "8 pages", "categories": [ "math.NT" ], "abstract": "In this note we prove that for all $a \\in \\mathbb{N}$, $x \\in \\mathbb{R}_+ \\cup \\{0\\}$, and $s \\in \\mathbb{C}$ with $\\Re(s) > a + 2$, the (alternating) weighted series of the Hurwitz zeta function, $$ \\sum_{k \\geq 1} (\\pm 1)^k (k + x)^a\\zeta(s,k + x), $$ resolves into a finite combination of Hurwitz (Lerch) zeta functions. This applies in Marichal and Zena\\\"idi's theory on analogues of the Bohr-Mollerup theorem for higher-order convex functions.", "revisions": [ { "version": "v1", "updated": "2023-02-03T17:09:09.000Z" } ], "analyses": { "subjects": [ "11M35" ], "keywords": [ "hurwitz zeta function", "weighted series", "higher-order convex functions", "bohr-mollerup theorem", "finite combination" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable" } } }