{ "id": "2302.01720", "version": "v1", "published": "2023-02-03T13:18:33.000Z", "updated": "2023-02-03T13:18:33.000Z", "title": "Compact surfaces with boundary with prescribed mean curvature depending on the Gauss map", "authors": [ "Antonio Bueno", "Rafael López" ], "categories": [ "math.DG" ], "abstract": "Given a $C^1$ function $\\mathcal{H}$ defined in the unit sphere $\\mathbb{S}^2$, an $\\mathcal{H}$-surface $M$ is a surface in the Euclidean space $\\mathbb{R}^3$ whose mean curvature $H_M$ satisfies $H_M(p)=\\mathcal{H}(N_p)$, $p\\in M$, where $N$ is the Gauss map of $M$. Given a closed simple curve $\\Gamma\\subset\\mathbb{R}^3$ and a function $\\mathcal{H}$, in this paper we investigate the geometry of compact $\\mathcal{H}$-surfaces spanning $\\Gamma$ in terms of $\\Gamma$. Under mild assumptions on $\\mathcal{H}$, we prove non-existence of closed $\\mathcal{H}$-surfaces, in contrast with the classical case of constant mean curvature. We give conditions on $\\mathcal{H}$ that ensure that if $\\Gamma$ is a circle, then $M$ is a rotational surface. We also establish the existence of estimates of the area of $\\mathcal{H}$-surfaces in terms of the height of the surface.", "revisions": [ { "version": "v1", "updated": "2023-02-03T13:18:33.000Z" } ], "analyses": { "subjects": [ "53A10", "53C42", "35J93", "35B06", "35B50" ], "keywords": [ "prescribed mean curvature", "gauss map", "compact surfaces", "constant mean curvature", "unit sphere" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }