{ "id": "2301.13645", "version": "v1", "published": "2023-01-31T13:58:00.000Z", "updated": "2023-01-31T13:58:00.000Z", "title": "Existence, uniqueness and $L^2 _t (H_x ^2) \\cap L^\\infty _t (H^1 _x) \\cap H^1 _t (L^2 _x) $ regularity of the gradient flow of the Ambrosio-Tortorelli functional", "authors": [ "Tommaso Cortopassi" ], "comment": "14 pages", "categories": [ "math.AP" ], "abstract": "We consider the gradient flow of the Ambrosio-Tortorelli functional at fixed $\\epsilon>0$, proving existence, uniqueness and $L^2 _t (H_x ^2) \\cap L^\\infty _t (H^1 _x) \\cap H^1 _t (L^2 _x) $ regularity in dimension 2. In particular we improve a previous result where such regularity was known only up to a finite number of space time points, which diverged as $\\epsilon \\to 0$. By employing a different technique for the crucial $L^2 _t (H^2 _x)$ estimates we can see how in fact the desired regularity holds everywhere.", "revisions": [ { "version": "v1", "updated": "2023-01-31T13:58:00.000Z" } ], "analyses": { "keywords": [ "gradient flow", "ambrosio-tortorelli functional", "uniqueness", "space time points", "finite number" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }