{ "id": "2301.13433", "version": "v1", "published": "2023-01-31T06:00:31.000Z", "updated": "2023-01-31T06:00:31.000Z", "title": "On well-posedness results for the cubic-quintic NLS on $\\mathbb{T}^3$", "authors": [ "Yongming Luo", "Xueying Yu", "Haitian Yue", "Zehua Zhao" ], "comment": "11 pages. Comments are welcome!", "categories": [ "math.AP" ], "abstract": "We consider the periodic cubic-quintic nonlinear Schr\\\"odinger equation \\begin{align}\\label{cqnls_abstract} (i\\partial_t +\\Delta )u=\\mu_1 |u|^2 u+\\mu_2 |u|^4 u\\tag{CQNLS} \\end{align} on the three-dimensional torus $\\mathbb{T}^3$ with $\\mu_1,\\mu_2\\in \\mathbb{R} \\setminus\\{0\\}$. As a first result, we establish the small data well-posedness of \\eqref{cqnls_abstract} for arbitrarily given $\\mu_1$ and $\\mu_2$. By adapting the crucial perturbation arguments in \\cite{zhang2006cauchy} to the periodic setting, we also prove that \\eqref{cqnls_abstract} is always globally well-posed in $H^1(\\mathbb{T}^3)$ in the case $\\mu_2>0$.", "revisions": [ { "version": "v1", "updated": "2023-01-31T06:00:31.000Z" } ], "analyses": { "keywords": [ "well-posedness results", "cubic-quintic nls", "periodic cubic-quintic nonlinear", "small data well-posedness", "crucial perturbation arguments" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }