{ "id": "2301.11906", "version": "v1", "published": "2023-01-27T18:44:39.000Z", "updated": "2023-01-27T18:44:39.000Z", "title": "A sufficient condition for Haar multipliers in Triebel-Lizorkin spaces", "authors": [ "Gustavo Garrigós", "Andreas Seeger", "Tino Ullrich" ], "comment": "13 pages, 5 figures", "categories": [ "math.CA" ], "abstract": "We consider Haar multiplier operators $T_m$ acting on Sobolev spaces, and more generally Triebel-Lizorkin spaces $F^s_{p,q}(\\mathbb{R})$, for indices in which the Haar system is not unconditional. When $m$ depends only on the Haar frequency, we give a sufficient condition for the boundedness of $T_m$ in $F^s_{p,q}$, in terms of the variation norms $\\|m\\|_{V_u}$, which is optimal in $u$ (up to endpoints) when $p, q> 1$.", "revisions": [ { "version": "v1", "updated": "2023-01-27T18:44:39.000Z" } ], "analyses": { "subjects": [ "46E35", "46B15", "42C40" ], "keywords": [ "triebel-lizorkin spaces", "sufficient condition", "haar multiplier operators", "variation norms", "haar frequency" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }