{ "id": "2301.11795", "version": "v1", "published": "2023-01-27T15:52:32.000Z", "updated": "2023-01-27T15:52:32.000Z", "title": "Higher regularity for weak solutions to degenerate parabolic problems", "authors": [ "Andrea Gentile", "Antonia Passarelli di Napoli" ], "categories": [ "math.AP" ], "abstract": "In this paper, we study the regularity of weak solutions to the following strongly degenerate parabolic equation \\begin{equation*} u_t-\\div\\left(\\left(\\left|Du\\right|-1\\right)_+^{p-1}\\frac{Du}{\\left|Du\\right|}\\right)=f\\qquad\\mbox{ in }\\Omega_T, \\end{equation*} where $\\Omega$ is a bounded domain in $\\mathbb{R}^{n}$ for $n\\geq2$, $p\\geq2$ and $\\left(\\,\\cdot\\,\\right)_{+}$ stands for the positive part. We prove the higher differentiability of a nonlinear function of the spatial gradient of the weak solutions, assuming only that $f\\in L^{2}_{\\loc}\\left(\\Omega_T\\right)$. This allows us to establish the higher integrability of the spatial gradient under the same minimal requirement on the datum $f$.", "revisions": [ { "version": "v1", "updated": "2023-01-27T15:52:32.000Z" } ], "analyses": { "subjects": [ "35B45", "35B65", "35D30", "35K10", "35K65" ], "keywords": [ "weak solutions", "degenerate parabolic problems", "higher regularity", "spatial gradient", "strongly degenerate parabolic equation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }