{ "id": "2301.11193", "version": "v1", "published": "2023-01-26T16:04:47.000Z", "updated": "2023-01-26T16:04:47.000Z", "title": "Linear and quadratic Chabauty for affine hyperbolic curves", "authors": [ "Marius Leonhardt", "Martin Lüdtke", "J. Steffen Müller" ], "comment": "19 pages; comments welcome", "categories": [ "math.NT" ], "abstract": "We give sufficient conditions for finiteness of linear and quadratic refined Chabauty-Kim loci of affine hyperbolic curves. We achieve this by constructing depth $\\leq 2$ quotients of the fundamental group, following a construction of Balakrishnan-Dogra in the projective case. We also apply Betts' machinery of weight filtrations to give unconditional explicit upper bounds on the number of S-integral points when our conditions are satisfied.", "revisions": [ { "version": "v1", "updated": "2023-01-26T16:04:47.000Z" } ], "analyses": { "subjects": [ "14G05", "11G30", "11D45" ], "keywords": [ "affine hyperbolic curves", "quadratic chabauty", "unconditional explicit upper bounds", "quadratic refined chabauty-kim loci", "fundamental group" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }