{ "id": "2301.10605", "version": "v1", "published": "2023-01-25T14:26:00.000Z", "updated": "2023-01-25T14:26:00.000Z", "title": "A note on Hausdorff-Young inequalities in function spaces", "authors": [ "Hans Triebel" ], "categories": [ "math.FA" ], "abstract": "The classical Hausdorff-Young inequalities for the Fourier transform acting between appropriate $L_p$ spaces are cornerstones of Fourier analysis. Here we extend it to weighted spaces of Besov or Sobolev type where the weight has the form $w(x)=(1+|x|^2)^{\\alpha/2}$. This note is not a paper or draft but a sketchy complement to some earlier results where we dealt with mapping properties of the Fourier transform.", "revisions": [ { "version": "v1", "updated": "2023-01-25T14:26:00.000Z" } ], "analyses": { "subjects": [ "46E35" ], "keywords": [ "function spaces", "fourier analysis", "classical hausdorff-young inequalities", "sobolev type", "sketchy complement" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }