{ "id": "2301.09263", "version": "v1", "published": "2023-01-23T04:25:08.000Z", "updated": "2023-01-23T04:25:08.000Z", "title": "On the solutions of $x^2= By^p+Cz^p$ and $2x^2= By^p+Cz^p$ over totally real fields", "authors": [ "Narasimha Kumar", "Satyabrat Sahoo" ], "comment": "Submitted for publication; Any comments are welcome. arXiv admin note: text overlap with arXiv:2207.10930", "categories": [ "math.NT" ], "abstract": "In this article, we study the solutions of certain type over $K$ of the Diophantine equation $x^2= By^p+Cz^p$ with prime exponent $p$, where $B$ is an odd integer and $C$ is either an odd integer or $C=2^r$ for $r \\in \\mathbb{N}$. Further, we study the non-trivial primitive solutions of the Diophantine equation $x^2= By^p+2^rz^p$ ($r\\in {1,2,4,5}$) (resp., $2x^2= By^p+2^rz^p$ with $r \\in \\mathbb{N}$) with prime exponent $p$, over $K$. We also present several purely local criteria of $K$.", "revisions": [ { "version": "v1", "updated": "2023-01-23T04:25:08.000Z" } ], "analyses": { "subjects": [ "11D41", "11R80", "11F80", "11G05", "11R04" ], "keywords": [ "totally real fields", "odd integer", "prime exponent", "diophantine equation", "non-trivial primitive solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }