{ "id": "2301.08825", "version": "v1", "published": "2023-01-20T23:16:16.000Z", "updated": "2023-01-20T23:16:16.000Z", "title": "Bounding the Largest Inhomogeneous Approximation Constant", "authors": [ "Bishnu Paudel", "Chris Pinner" ], "categories": [ "math.NT" ], "abstract": "For a given irrational number $\\alpha$ and a real number $\\gamma$ in $(0,1)$ one defines the two-sided inhomogeneous approximation constant \\begin{equation*} M(\\alpha,\\gamma):=\\liminf_{|n|\\rightarrow\\infty}|n| ||n\\alpha-\\gamma||, \\end{equation*} and the case of worst inhomogeneous approximation for $\\alpha$ \\begin{equation*} \\rho(\\alpha):=\\sup_{\\gamma\\notin\\mathbb{Z}+\\alpha\\mathbb{Z}}M(\\alpha,\\gamma). \\end{equation*} We are interested in lower bounds on $\\rho(\\alpha)$ in terms of $R:=\\liminf_{i\\rightarrow\\infty}a_i,$ where the $a_i$ are the partial quotients in the negative (i.e.\\ the `round-up') continued fraction expansion of $\\alpha$. We obtain bounds for any $R\\geq 3$ which are best possible when $R$ is even (and asymptotically precise when $R$ is odd). In particular when $R\\geq 3$ $$ \\rho(\\alpha)\\geq \\cfrac{1}{6\\sqrt{3}+8}=\\cfrac{1}{18.3923\\dots}, $$ and when $R\\geq 4$, optimally, $$ \\rho(\\alpha) \\geq \\cfrac{1}{4\\sqrt{3}+2}=\\cfrac{1}{8.9282\\ldots}. $$", "revisions": [ { "version": "v1", "updated": "2023-01-20T23:16:16.000Z" } ], "analyses": { "subjects": [ "11J20", "11J06", "11J70" ], "keywords": [ "largest inhomogeneous approximation constant", "irrational number", "real number", "two-sided inhomogeneous approximation constant", "worst inhomogeneous approximation" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }