{ "id": "2301.08707", "version": "v1", "published": "2023-01-20T18:04:53.000Z", "updated": "2023-01-20T18:04:53.000Z", "title": "Separating the edges of a graph by a linear number of paths", "authors": [ "Marthe Bonamy", "Fábio Botler", "François Dross", "Tássio Naia", "Jozef Skokan" ], "comment": "6 pages, 2 figures", "categories": [ "math.CO", "cs.DM" ], "abstract": "Recently, Letzter proved that any graph of order $n$ contains a collection $\\mathcal{P}$ of $O(n\\log^\\star n)$ paths with the following property: for all distinct edges $e$ and $f$ there exists a path in $\\mathcal{P}$ which contains $e$ but not $f$. We improve this upper bound to $19 n$, thus answering a question of Katona and confirming a conjecture independently posed by Balogh, Csaba, Martin, and Pluh\\'ar and by Falgas-Ravry, Kittipassorn, Kor\\'andi, Letzter, and Narayanan. Our proof is elementary and self-contained.", "revisions": [ { "version": "v1", "updated": "2023-01-20T18:04:53.000Z" } ], "analyses": { "keywords": [ "linear number", "upper bound", "separating", "distinct edges", "collection" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }