{ "id": "2301.08471", "version": "v1", "published": "2023-01-20T08:55:27.000Z", "updated": "2023-01-20T08:55:27.000Z", "title": "A geometric characterization of range-kernel complementarity", "authors": [ "Dimosthenis Drivaliaris", "Nikos Yannakakis" ], "categories": [ "math.FA" ], "abstract": "We show that a bounded linear operator on a Banach space with closed range has range-kernel complementarity if and only if its generalized amplitude is less than $\\pi$. An application to the strong convergence of the iterations of a bounded linear operator is also given.", "revisions": [ { "version": "v1", "updated": "2023-01-20T08:55:27.000Z" } ], "analyses": { "subjects": [ "47A05", "47A10", "46C50" ], "keywords": [ "range-kernel complementarity", "geometric characterization", "bounded linear operator", "banach space", "strong convergence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }