{ "id": "2301.07442", "version": "v1", "published": "2023-01-18T11:30:35.000Z", "updated": "2023-01-18T11:30:35.000Z", "title": "Stability of Hardy-Sobolev inequality involving p-Laplace", "authors": [ "Shengbing Deng", "Xingliang Tian" ], "comment": "49 pages. arXiv admin note: text overlap with arXiv:2212.05459; text overlap with arXiv:2003.04037 by other authors", "categories": [ "math.AP" ], "abstract": "This paper is devoted to considering the following Hardy-Sobolev inequality \\[ \\int_{\\mathbb{R}^N}|\\nabla u|^p \\mathrm{d}x \\geq \\mathcal{S}_\\beta\\left(\\int_{\\mathbb{R}^N}\\frac{|u|^{p^*_\\beta}}{|x|^{\\beta}} \\mathrm{d}x\\right)^\\frac{p}{p^*_\\beta},\\quad \\forall u\\in C^\\infty_0(\\mathbb{R}^N), \\] for some constant $\\mathcal{S}_\\beta>0$, where $1