{ "id": "2301.07055", "version": "v1", "published": "2023-01-17T18:16:37.000Z", "updated": "2023-01-17T18:16:37.000Z", "title": "On $G$-birational rigidity of del Pezzo surfaces", "authors": [ "Egor Yasinsky" ], "categories": [ "math.AG" ], "abstract": "Let $G$ be a finite group and $H\\subseteq G$ be its subgroup. We prove that if a smooth del Pezzo surface over an algebraically closed field is $H$-birationally rigid then it is also $G$-birationally rigid, answering a geometric version of Koll\\'{a}r's question in dimension 2 by positive.", "revisions": [ { "version": "v1", "updated": "2023-01-17T18:16:37.000Z" } ], "analyses": { "subjects": [ "14E07", "14E05", "14E30", "14J45", "14M22" ], "keywords": [ "birational rigidity", "smooth del pezzo surface", "birationally rigid", "finite group", "geometric version" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }